287 research outputs found

    Resolution Trees with Lemmas: Resolution Refinements that Characterize DLL Algorithms with Clause Learning

    Full text link
    Resolution refinements called w-resolution trees with lemmas (WRTL) and with input lemmas (WRTI) are introduced. Dag-like resolution is equivalent to both WRTL and WRTI when there is no regularity condition. For regular proofs, an exponential separation between regular dag-like resolution and both regular WRTL and regular WRTI is given. It is proved that DLL proof search algorithms that use clause learning based on unit propagation can be polynomially simulated by regular WRTI. More generally, non-greedy DLL algorithms with learning by unit propagation are equivalent to regular WRTI. A general form of clause learning, called DLL-Learn, is defined that is equivalent to regular WRTL. A variable extension method is used to give simulations of resolution by regular WRTI, using a simplified form of proof trace extensions. DLL-Learn and non-greedy DLL algorithms with learning by unit propagation can use variable extensions to simulate general resolution without doing restarts. Finally, an exponential lower bound for WRTL where the lemmas are restricted to short clauses is shown

    The prospects for mathematical logic in the twenty-first century

    Get PDF
    The four authors present their speculations about the future developments of mathematical logic in the twenty-first century. The areas of recursion theory, proof theory and logic for computer science, model theory, and set theory are discussed independently.Comment: Association for Symbolic Logi

    Provably Total Functions of Arithmetic with Basic Terms

    Full text link
    A new characterization of provably recursive functions of first-order arithmetic is described. Its main feature is using only terms consisting of 0, the successor S and variables in the quantifier rules, namely, universal elimination and existential introduction.Comment: In Proceedings DICE 2011, arXiv:1201.034

    Sharpened lower bounds for cut elimination

    Get PDF
    We present sharpened lower bounds on the size of cut free proofs for first-order logic. Prior lower bounds for eliminating cuts from a proof established superexponential lower bounds as a stack of exponentials, with the height of the stack proportional to the maximum depth d of the formulas in the original proof. Our new lower bounds remove the constant of proportionality, giving an exponential stack of height equal to d − O(1). The proof method is based on more efficiently expressing the Gentzen-Solovay cut formulas as low depth formulas

    The depth of intuitionistic cut free proofs

    No full text
    Abstract We prove a quadratic upper bound for the depth of cut free proofs in propositional intuitionistic logic formalized with Gentzen's sequent calculus. We discuss bounds on the necessary number of reuses of left implication rules. We exhibit an example showing that this quadratic bound is optimal. As a corollary, this gives a new proof that propositional validity for intuitionistic logic is in PSPACE

    Strong isomorphism reductions in complexity theory

    Get PDF
    We give the first systematic study of strong isomorphism reductions, a notion of reduction more appropriate than polynomial time reduction when, for example, comparing the computational complexity of the isomorphim problem for different classes of structures. We show that the partial ordering of its degrees is quite rich. We analyze its relationship to a further type of reduction between classes of structures based on purely comparing for every n the number of nonisomorphic structures of cardinality at most n in both classes. Furthermore, in a more general setting we address the question of the existence of a maximal element in the partial ordering of the degrees

    Biola Hour Highlights, 1976 - 03

    Get PDF
    Ephesians 1:15 by Al Sanders Stress by Charles Swindoll Revelation by Lloyd Anderson Panel Discussions with Richard Chase, Charles Feinberg, and Samuel Sutherlandhttps://digitalcommons.biola.edu/bhhs/1025/thumbnail.jp

    Biola Hour Highlights, 1976 - 08

    Get PDF
    The Way Out of Depression: Psalm 3 by Al Sanders Panel Discussion with Richard Chase, Charles Feinberg, and Samuel Sutherland History Panel with Richard Chase, James O. Henry, Ethel Rankin, Dietrick Buss Daniel by Lloyd Andersonhttps://digitalcommons.biola.edu/bhhs/1030/thumbnail.jp

    Bounded Arithmetic in Free Logic

    Full text link
    One of the central open questions in bounded arithmetic is whether Buss' hierarchy of theories of bounded arithmetic collapses or not. In this paper, we reformulate Buss' theories using free logic and conjecture that such theories are easier to handle. To show this, we first prove that Buss' theories prove consistencies of induction-free fragments of our theories whose formulae have bounded complexity. Next, we prove that although our theories are based on an apparently weaker logic, we can interpret theories in Buss' hierarchy by our theories using a simple translation. Finally, we investigate finitistic G\"odel sentences in our systems in the hope of proving that a theory in a lower level of Buss' hierarchy cannot prove consistency of induction-free fragments of our theories whose formulae have higher complexity
    corecore